Effects of free fatty acid elevation on postabsorptive endogenous glucose production and gluconeogenesis in humans.

نویسندگان

  • M Roden
  • H Stingl
  • V Chandramouli
  • W C Schumann
  • A Hofer
  • B R Landau
  • P Nowotny
  • W Waldhäusl
  • G I Shulman
چکیده

Effects of free fatty acids (FFAs) on endogenous glucose production (EGP) and gluconeogenesis (GNG) were examined in healthy subjects (n = 6) during stepwise increased Intralipid/heparin infusion (plasma FFAs 0.8+/-0.1, 1.8+/-0.2, and 2.8+/-0.3 mmol/l) and during glycerol infusion (plasma FFAs approximately 0.5 mmol/l). Rates of EGP were determined with D-[6,6-2H2]glucose and contributions of GNG from 2H enrichments in carbons 2 and 5 of blood glucose after 2H2O ingestion. Plasma glucose concentrations decreased by approximately 10% (P < 0.01), whereas plasma insulin increased by approximately 47% (P = 0.02) after 9 h of lipid infusion. EGP declined from 9.3+/-0.5 (lipid) and 9.0+/-0.8 pmol x kg(-1) x min(-1) (glycerol) to 8.4+/-0.5 and 8.2+/-0.7 micromol x kg(-1) x min(-1), respectively (P < 0.01). Contribution of GNG similarly rose (P < 0.01) from 46+/-4 and 52+/-3% to 65+/-8 and 78+/-7%. To exclude interaction of FFAs with insulin secretion, the study was repeated at fasting plasma insulin (approximately 35 pmol/l) and glucagon (approximately 90 ng/ml) concentrations using somatostatin-insulin-glucagon clamps. Plasma glucose increased by approximately 50% (P < 0.005) during lipid but decreased by approximately 12% during glycerol infusion (P < 0.005). EGP remained unchanged over the 9-h period (9.9+/-1.2 vs. 9.0+/-1.1 micromol x kg(-1) x min(-1)). GNG accounted for 62+/-5 (lipid) and 60+/-6% (glycerol) of EGP at time 0 and rose to 74+/-3% during lipid infusion only (P < 0.05 vs. glycerol: 64+/-4%). In conclusion, high plasma FFA concentrations increase the percent contribution of GNG to EGP and may contribute to increased rates of GNG in patients with type 2 diabetes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of free fatty acids per se on glucose production, gluconeogenesis, and glycogenolysis.

Insulin-independent effects of a physiological increase in free fatty acid (FFA) levels on fasting glucose production, gluconeogenesis, and glycogenolysis were assessed by administering [6,6-(2)H(2)]-glucose and deuteriated water ((2)H(2)O) in 12 type 1 diabetic patients, during 6-h infusions of either saline or a lipid emulsion. Insulin was either fully replaced (euglycemic group, n = 6), or u...

متن کامل

Effects of nicotinic acid on fatty acid kinetics, fuel selection, and pathways of glucose production in women.

Chronic nicotinic acid (NA) ingestion effectively lowers lipid levels, but adverse effects on glucose metabolism have been reported. Our goal was to investigate acute and chronic effects of NA on lipolysis and glucose metabolism in women. Healthy normolipidemic volunteers (n = 5) were studied twice; four-day hospital stays were separated by 1 mo, during which time subjects took increasing doses...

متن کامل

Method for continuous intravenous infusion of large amounts of oleic acid into rats.

A method has been developed for the continuous intravenous infusion of large amounts of oleic acid into rats. The acid was infused in the form of an emulsion prepared by sonication and stabilized with albumin in low concentration. Fatty acid was infused at a rate equal to the turnover rate of endogenous free fatty acids and the infusion was continued for 3 hr. During this time there was no evid...

متن کامل

Inhibiting gluconeogenesis prevents fatty acid-induced increases in endogenous glucose production.

Glucose effectiveness, the ability of glucose per se to suppress endogenous glucose production (EGP), is lost in type 2 diabetes mellitus (T2DM). Free fatty acids (FFA) may contribute to this loss of glucose effectiveness in T2DM by increasing gluconeogenesis (GNG) and impairing the response to hyperglycemia. Thus, we first examined the effects of increasing plasma FFA levels for 3, 6, or 16 h ...

متن کامل

Effects of physiological hyperinsulinemia on systemic, renal, and hepatic substrate metabolism.

To determine the effect of physiological hyperinsulinemia on renal and hepatic substrate metabolism, we assessed systemic and renal glucose release and uptake, systemic and renal gluconeogenesis from glutamine, and certain aspects of systemic and renal glutamine and free fatty acid (FFA) metabolism. These were assessed under basal postabsorptive conditions and during 4-h hyperinsulinemic euglyc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 49 5  شماره 

صفحات  -

تاریخ انتشار 2000